PyTorch

PyTorch è un modulo esterno del linguaggio Python con diverse funzioni dedicate al machine learning e al deep learning.

La libreria PyTorch ha le stesse funzionalità di Numpy per quanto riguarda l'elaborazione degli array multidimensionali ma è molto più ampia e potente.

E' particolarmente utile per elaborare i tensori usando l'accelerazione delle GPU delle schede grafiche. Spesso uso PyTorch nell'elaborazione delle reti neurali ed è molto veloce.

Come installare PyTorch

Per usare PyTorch devo prima installarlo in Python tramite il comando pip.

pip install torch

Se non funziona, posso sempre scaricare e installare il modulo manualmente

Ad esempio, per installare PyTorch su Python 3.7

pip3 install https://download.pytorch.org/whl/cpu/torch-1.0.1-cp37-cp37m-win_amd64.whl
pip3 install torchvision

Ovviamente, il modulo da scaricare cambia a seconda della versione di Python.

Per qualsiasi info aggiornata si può consultare la pagina ufficiale di PyTorch.

Dopo averlo installato, posso importare il modulo PyTorch nell'interprete.

>>> import torch

E così via

Le funzioni e i metodi di PyTorch

Ecco l'elenco completo delle funzioni e dei metodi di PyTorch

  • Argument
  • ArgumentSpec
  • Block
  • BoolType
  • ByteStorage
  • ByteTensor
  • CharStorage
  • CharTensor
  • Code
  • CompleteArgumentSpec
  • DoubleStorage
  • DoubleTensor
  • DynamicType
  • ExecutionPlanState
  • FatalError
  • FloatStorage
  • FloatTensor
  • FloatType
  • FunctionSchema
  • Future
  • Generator
  • Gradient
  • Graph
  • GraphExecutor
  • GraphExecutorState
  • HalfStorage
  • HalfStorageBase
  • HalfTensor
  • IODescriptor
  • IS_CONDA
  • IntStorage
  • IntTensor
  • IntType
  • JITException
  • ListType
  • LongStorage
  • LongTensor
  • Node
  • NumberType
  • PyTorchFileReader
  • PyTorchFileWriter
  • ScriptMethod
  • ScriptModule
  • ShortStorage
  • ShortTensor
  • Size
  • Storage
  • Tensor
  • TracingState
  • TupleType
  • Type
  • Use
  • Value
  • _C
  • _StorageBase
  • __all__
  • __builtins__
  • __cached__
  • __doc__
  • __file__
  • __loader__
  • __name__
  • __package__
  • __path__
  • __spec__
  • __version__
  • _argmax
  • _argmin
  • _baddbmm_mkl_
  • _cast_Byte
  • _cast_Char
  • _cast_Double
  • _cast_Float
  • _cast_Half
  • _cast_Int
  • _cast_Long
  • _cast_Short
  • _convolution
  • _convolution_nogroup
  • _copy_same_type_
  • _ctc_loss
  • _cudnn_ctc_loss
  • _cudnn_init_dropout_state
  • _cudnn_rnn
  • _cudnn_rnn_flatten_weight
  • _cufft_clear_plan_cache
  • _cufft_get_plan_cache_max_size
  • _cufft_get_plan_cache_size
  • _cufft_set_plan_cache_max_size
  • _dim_arange
  • _dirichlet_grad
  • _embedding_bag
  • _fft_with_size
  • _fused_dropout
  • _import_dotted_name
  • _jit_internal
  • _log_softmax
  • _log_softmax_backward_data
  • _masked_scale
  • _np
  • _ops
  • _pack_padded_sequence
  • _pad_packed_sequence
  • _promote_types
  • _reshape_from_tensor
  • _s_copy_from
  • _s_where
  • _shape_as_tensor
  • _six
  • _softmax
  • _softmax_backward_data
  • _sparse_addmm
  • _sparse_mm
  • _sparse_sum
  • _standard_gamma
  • _standard_gamma_grad
  • _storage_classes
  • _string_classes
  • _tensor_classes
  • _tensor_str
  • _thnn
  • _trilinear
  • _unique
  • _unique_dim
  • _utils
  • _utils_internal
  • _weight_norm
  • _weight_norm_cuda_interface
  • abs
  • abs_
  • acos
  • acos_
  • adaptive_avg_pool1d
  • adaptive_max_pool1d
  • add
  • add_extra_dll_dir
  • addbmm
  • addcdiv
  • addcmul
  • addmm
  • addmv
  • addmv_
  • addr
  • affine_grid_generator
  • all
  • allclose
  • alpha_dropout
  • alpha_dropout_
  • any
  • arange
  • argmax
  • argmin
  • argsort
  • as_strided
  • as_strided_
  • as_tensor
  • asin
  • asin_
  • atan
  • atan2
  • atan_
  • autograd
  • avg_pool1d
  • backends
  • baddbmm
  • bartlett_window
  • batch_norm
  • bernoulli
  • bilinear
  • binary_cross_entropy_with_logits
  • bincount
  • blackman_window
  • bmm
  • broadcast_tensors
  • btrifact
  • btrifact_with_info
  • btrisolve
  • btriunpack
  • cat
  • ceil
  • ceil_
  • celu
  • celu_
  • chain_matmul
  • cholesky
  • chunk
  • clamp
  • clamp_
  • clamp_max
  • clamp_max_
  • clamp_min
  • clamp_min_
  • clone
  • compiled_with_cxx11_abi
  • complex128
  • complex32
  • complex64
  • constant_pad_nd
  • conv1d
  • conv2d
  • conv3d
  • conv_tbc
  • conv_transpose1d
  • conv_transpose2d
  • conv_transpose3d
  • convolution
  • cos
  • cos_
  • cosh
  • cosh_
  • cosine_embedding_loss
  • cosine_similarity
  • cross
  • ctc_loss
  • cuda
  • cudnn_affine_grid_generator
  • cudnn_batch_norm
  • cudnn_convolution
  • cudnn_convolution_transpose
  • cudnn_grid_sampler
  • cudnn_is_acceptable
  • cumprod
  • cumsum
  • default_generator
  • det
  • detach
  • detach_
  • device
  • diag
  • diag_embed
  • diagflat
  • diagonal
  • digamma
  • dist
  • distributed
  • distributions
  • div
  • dll_paths
  • dot
  • double
  • dropout
  • dropout_
  • dsmm
  • dtype
  • eig
  • einsum
  • embedding
  • embedding_bag
  • embedding_renorm_
  • empty
  • empty_like
  • empty_strided
  • enable_grad
  • eq
  • equal
  • erf
  • erf_
  • erfc
  • erfc_
  • erfinv
  • exp
  • exp_
  • expm1
  • expm1_
  • eye
  • feature_alpha_dropout
  • feature_alpha_dropout_
  • feature_dropout
  • feature_dropout_
  • fft
  • fill_
  • finfo
  • flatten
  • flip
  • float
  • float16
  • float32
  • float64
  • floor
  • floor_
  • fmod
  • fork
  • frac
  • frobenius_norm
  • from_numpy
  • full
  • full_like
  • functional
  • gather
  • ge
  • gels
  • geqrf
  • ger
  • gesv
  • get_default_dtype
  • get_device
  • get_file_path
  • get_num_threads
  • get_nvToolsExt_path
  • get_rng_state
  • grid_sampler
  • grid_sampler_2d
  • grid_sampler_3d
  • group_norm
  • gru
  • gru_cell
  • gt
  • half
  • hamming_window
  • hann_window
  • hardshrink
  • has_cudnn
  • has_lapack
  • has_mkl
  • hinge_embedding_loss
  • histc
  • hsmm
  • hspmm
  • ifft
  • iinfo
  • import_ir_module
  • import_ir_module_from_buffer
  • index_put
  • index_put_
  • index_select
  • initial_seed
  • instance_norm
  • int
  • int16
  • int32
  • int64
  • int8
  • inverse
  • irfft
  • is_anomaly_enabled
  • is_complex
  • is_distributed
  • is_floating_point
  • is_grad_enabled
  • is_nonzero
  • is_same_size
  • is_signed
  • is_storage
  • is_tensor
  • isclose
  • isfinite
  • isinf
  • isnan
  • jit
  • kl_div
  • kthvalue
  • layer_norm
  • layout
  • le
  • lerp
  • lgamma
  • linspace
  • load
  • log
  • log10
  • log10_
  • log1p
  • log1p_
  • log2
  • log2_
  • log_
  • log_softmax
  • logdet
  • logspace
  • logsumexp
  • long
  • lstm
  • lstm_cell
  • lt
  • manual_seed
  • margin_ranking_loss
  • masked_select
  • matmul
  • matrix_power
  • matrix_rank
  • max
  • max_pool1d_with_indices
  • mean
  • median
  • merge_type_from_type_comment
  • meshgrid
  • min
  • miopen_batch_norm
  • miopen_convolution
  • miopen_convolution_transpose
  • mkldnn_convolution
  • mkldnn_convolution_backward_weights
  • mm
  • mode
  • mul
  • multinomial
  • multiprocessing
  • mv
  • mvlgamma
  • name
  • narrow
  • native_batch_norm
  • native_clone
  • native_norm
  • native_pow
  • native_resize_as_
  • native_zero_
  • ne
  • neg
  • nn
  • no_grad
  • nonzero
  • norm
  • norm_except_dim
  • normal
  • nuclear_norm
  • numel
  • ones
  • ones_like
  • onnx
  • ops
  • optim
  • orgqr
  • ormqr
  • os
  • p
  • pairwise_distance
  • parse_type_comment
  • pdist
  • pin_memory
  • pinverse
  • pixel_shuffle
  • platform
  • poisson
  • polygamma
  • potrf
  • potri
  • potrs
  • pow
  • prelu
  • prepare_multiprocessing_environment
  • prod
  • pstrf
  • py_dll_path
  • qr
  • rand
  • rand_like
  • randint
  • randint_like
  • randn
  • randn_like
  • random
  • randperm
  • range
  • reciprocal
  • register_batch_operator
  • relu
  • relu_
  • remainder
  • renorm
  • reshape
  • resize_as_
  • rfft
  • rnn_relu
  • rnn_relu_cell
  • rnn_tanh
  • rnn_tanh_cell
  • roll
  • rot90
  • round
  • round_
  • rrelu
  • rrelu_
  • rsqrt
  • rsqrt_
  • rsub
  • s_copy_
  • s_native_addmm
  • s_native_addmm_
  • saddmm
  • save
  • select
  • selu
  • selu_
  • serialization
  • set_anomaly_enabled
  • set_default_dtype
  • set_default_tensor_type
  • set_flush_denormal
  • set_grad_enabled
  • set_num_threads
  • set_printoptions
  • set_rng_state
  • short
  • sigmoid
  • sigmoid_
  • sign
  • sin
  • sin_
  • sinh
  • sinh_
  • slogdet
  • smm
  • softmax
  • sort
  • sparse
  • sparse_coo
  • sparse_coo_tensor
  • split
  • split_with_sizes
  • spmm
  • sqrt
  • sqrt_
  • squeeze
  • sspaddmm
  • stack
  • std
  • stft
  • storage
  • strided
  • sub
  • sum
  • svd
  • symeig
  • sys
  • t
  • take
  • tan
  • tan_
  • tanh
  • tanh_
  • tensor
    crea un tensore, una matrice o un vettore
  • tensordot
  • testing
  • th_dll_path
  • threshold
  • threshold_
  • to_batch_graph
  • topk
  • torch
  • trace
  • transpose
  • tril
  • triplet_margin_loss
  • triu
  • trtrs
  • trunc
  • trunc_
  • typename
  • uint8
  • unbind
  • unique
  • unsqueeze
  • utils
  • var
  • version
  • wait
  • where
  • zero_
  • zeros
  • zeros_like

 


 

Segnalami un errore, un refuso o un suggerimento per migliorare gli appunti

FacebookTwitterLinkedinLinkedin
knowledge base

PyTorch